Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Lie-Piang, Anouk
Functionality-oriented selection of ingredients
Commits
c9094974
Commit
c9094974
authored
Jun 03, 2021
by
Lie-Piang, Anouk
Browse files
Update ComponentModel.Rmd
parent
f5e20eb2
Changes
1
Hide whitespace changes
Inline
Side-by-side
ComponentModel.Rmd
View file @
c9094974
...
...
@@ -104,7 +104,7 @@ ggplot(Viscosity_quality) +
geom_point(aes(x = R.squared, y = AIC, colour = as.factor(n_terms)))
```
#
finally, the selection of the right model. This is tricky. Let's a
rrange the models by $R^2$ and AIC.
#
A
rrange the models by $R^2$ and AIC.
```{r}
R2_arranged <- Viscosity_quality %>%
arrange(desc(R.squared))
...
...
@@ -122,7 +122,7 @@ AIC_arranged
# Print the summary of the 5 best models by AIC.
```{r}
print_models_AIC <- lapply(1:
2
, function(x) {
print_models_AIC <- lapply(1:
5
, function(x) {
my_models <- Viscosity_models[[AIC_arranged$n_terms[x]]]
models_AIC <- lapply(my_models, AIC)
my_index <- which(AIC_arranged$AIC[x] == models_AIC)
...
...
@@ -172,7 +172,7 @@ lapply(1:1, function(x) {
})
```
#Plot parity plot
#Plot parity plot
best model according to AIC
```{r}
lapply(1:1, function(x){
my_models <- Viscosity_models[[AIC_arranged$n_terms[x]]]
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment