\@writefile{toc}{\contentsline{subsection}{\numberline{3.3}Ultra-wide band data editing}{5}{}\protected@file@percent }
\@writefile{toc}{\contentsline{subsection}{\numberline{3.3}Ultra-wide band data editing}{4}{}\protected@file@percent }
\@writefile{toc}{\contentsline{subsection}{\numberline{3.4}Changepoint analysis for segmentation}{5}{}\protected@file@percent }
\@writefile{lof}{\contentsline{figure}{\numberline{1}{\ignorespaces Plans of the barns in which the data were recorded\relax}}{6}{}\protected@file@percent }
\@writefile{lot}{\contentsline{table}{\numberline{1}{\ignorespaces Overview of cow characteristics\relax}}{10}{}\protected@file@percent }
\newlabel{tab:my-table1}{{1}{10}}
\@writefile{lot}{\contentsline{table}{\numberline{2}{\ignorespaces Statistical properties of the time-series data across lying and non-lying bouts\relax}}{10}{}\protected@file@percent }
\@writefile{lot}{\contentsline{table}{\numberline{3}{\ignorespaces Overview of correctly and incorrectly detected changepoints corresponding to lying down or getting up\relax}}{11}{}\protected@file@percent }
\newlabel{tab:overview-changes}{{3}{11}}
\@writefile{toc}{\contentsline{subsection}{\numberline{4.3}Classification performance for cow identity-based data split}{11}{}\protected@file@percent }
\@writefile{toc}{\contentsline{subsection}{\numberline{4.4}Classification performance for time-based data split}{11}{}\protected@file@percent }
\@writefile{lot}{\contentsline{table}{\numberline{1}{\ignorespaces Overview of cow characteristics\relax}}{9}{}\protected@file@percent }
\newlabel{tab:my-table1}{{1}{9}}
\@writefile{lot}{\contentsline{table}{\numberline{2}{\ignorespaces Statistical properties of the time-series data across lying and non-lying bouts\relax}}{9}{}\protected@file@percent }
\@writefile{lot}{\contentsline{table}{\numberline{3}{\ignorespaces Overview of correctly and incorrectly detected changepoints corresponding to lying down or getting up\relax}}{10}{}\protected@file@percent }
\newlabel{tab:overview-changes}{{3}{10}}
\@writefile{toc}{\contentsline{subsection}{\numberline{4.3}Classification performance for cow identity-based data split}{10}{}\protected@file@percent }
\@writefile{toc}{\contentsline{subsection}{\numberline{4.4}Classification performance for time-based data split}{10}{}\protected@file@percent }
\citation{vazquez2015classification}
\citation{kok2015validation}
\citation{hermans2018promises}
...
...
@@ -53,22 +53,21 @@
\citation{huybrechts2014early}
\citation{adriaens2018novel}
\citation{tucker2021invited}
\@writefile{lof}{\contentsline{figure}{\numberline{2}{\ignorespaces Confusion matrix for the split based on cow identity\relax}}{12}{}\protected@file@percent }
\@writefile{lof}{\contentsline{figure}{\numberline{3}{\ignorespaces Prediction accuracy at cow-day level for the split based on cow identity\relax}}{13}{}\protected@file@percent }
\newlabel{fig:predictionaccuracy2}{{3}{13}}
\@writefile{lof}{\contentsline{figure}{\numberline{4}{\ignorespaces Confusion matrix for the split based on time\relax}}{14}{}\protected@file@percent }
\newlabel{fig:confusion1}{{4}{14}}
\@writefile{lof}{\contentsline{figure}{\numberline{5}{\ignorespaces Prediction accuracy at cow-day level for the split based on time\relax}}{15}{}\protected@file@percent }
\@writefile{lof}{\contentsline{figure}{\numberline{2}{\ignorespaces Confusion matrix for the split based on cow identity\relax}}{11}{}\protected@file@percent }
\@writefile{lof}{\contentsline{figure}{\numberline{3}{\ignorespaces Prediction accuracy at cow-day level for the split based on cow identity\relax}}{12}{}\protected@file@percent }
\newlabel{fig:predictionaccuracy2}{{3}{12}}
\@writefile{lof}{\contentsline{figure}{\numberline{4}{\ignorespaces Confusion matrix for the split based on time\relax}}{13}{}\protected@file@percent }
\@writefile{lof}{\contentsline{figure}{\numberline{5}{\ignorespaces Prediction accuracy at cow-day level for the split based on time\relax}}{14}{}\protected@file@percent }
\@writefile{lot}{\contentsline{table}{\numberline{4}{\ignorespaces Statistical and non-statistical features calculated from the segments\relax}}{20}{}\protected@file@percent }
\@writefile{lot}{\contentsline{table}{\numberline{4}{\ignorespaces Statistical and non-statistical features calculated from the segments\relax}}{18}{}\protected@file@percent }
@@ -287,7 +290,7 @@ In this study, we developed a methodology to predict certain aspects of the lyin
This work was conducted as part of a study sponsored by the Dutch Ministry of Economic Affairs (TKI Agri \& Food project 16022) and the Breed4Food partners Cobb Europe, CRV, Hendrix Genetics and Topigs Norsvin, and was also part of the framework for Policy Support with Research theme “Data driven \& High Tech” (Sensing potential, KB-38-001-008 and Artificial Intelligence KB-38-008-002) funded by the Dutch Ministry of Agriculture, Nature and Food Quality. Data collection was done in the context of the ERA-NET SusAn "FreeWalk" project, financially supported by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No. 696231. We thank the Livestock Technology data team of KU Leuven (Department of Biosystems, Belgium) for their valuable inputs and fruitful discussions on the methodology.